

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ISSN: 2277-9655

DIRICHLET AVERAGE OF ADVANCED MODIFIED M- FUNCTION AND FRACTIONAL DERIVATIVE

Manoj Sharma

Department of Mathematics RJIT, BSF Academy, Tekanpur, India

ABSTRACT

In this work we set up a relation between Dirichlet average of Advanced Modified M- function [16] and fractional derivative.

KEYWORDS AND PHRASES: Dirichlet average Advanced Modified M- function,, fractional derivative and Fractional calculus operators.

Mathematics Subject Classification: 26A33, 33A30, 33A25 and 83C99.

INTRODUCTION

Carlson [1-5] has defined Dirichlet average of functions which represents certain type of integral average with respect to Dirichlet measure. Carlson[1-5] showed that various important special functions can be derived as Dirichlet averages for the ordinary simple functions like x^t , e^x etc. He has also pointed out that the hidden symmetry of all special functions which provided their various transformations can be obtained by averaging x^n , e^x etc. Thus he established a unique process towards the unification of special functions by averaging a limited number of ordinary functions. Almost all known analytic special functions and their well known properties have been derived by this process.

In this paper, the Dirichlet average of Sharma's **Advanced Modified M** – function [16], has been obtained.

DEFINITIONS

We give blew some of the definitions which are necessary in the preparation of this paper.

Standard Simplex in \mathbb{R}^n , $n \geq 1$:

We denote the standard simplex in \mathbb{R}^n , $n \ge 1$ by [1, p.62].

$$E = E_n = \{ S(u_1, u_2, \dots u_n) : u_1 \ge 0, \dots u_n \ge 0, u_1 + u_2 + \dots + u_n \le 1 \}$$
 (2.1.1)

Dirichlet measure:

Let $b \in C^k$, $k \ge 2$ and let $E = E_{k-1}$ be the standard simplex in R^{k-1} . The complex measure μ_b is defined by E[1].

$$d\mu_b(u) = \frac{1}{B(b)} u_1^{b_1 - 1} \dots \dots \dots u_{k-1}^{b_{k-1} - 1} (1 - u_1 - \dots - u_{k-1}) b_k^{-1} du_1 \dots \dots du_{k-1}$$
(2.2.1)

Will be called a Dirichlet measure.

Here

$$B(b) = B(b1, \dots, bk) = \frac{\Gamma(b_1) \dots \Gamma(b_k)}{\Gamma(b_1 + \dots + b_k)},$$

$$C_{>} = \left\{ z \in z : z \neq 0, |ph z| < \frac{\pi}{2} \right\},$$

Open right half plane and $C_{>}k$ is the k^{th} Cartesian power of $C_{>}$

Dirichlet Average[1, p.75]:

Let Ω be the convex set in $C_>$, let $z=(z_1,\ldots,z_k)\in \Omega^k$, $k\geq 2$ and let u.z be a convex combination of z_1,\ldots,z_k . Let f be a measureable function on Ω and let μ_b be a Dirichlet measure on the standard simplex E in R^{k-1} . Define

© International Journal of Engineering Sciences & Research Technology

$$F(b,z) = \int_{E} f(u.z) d\,\mu_b(u)$$
 (2.3.1)

ISSN: 2277-9655

We shall call F the Dirichlet measure of f with variables $z = (z_1, \dots, z_k)$ and parameters $b = (b_1, \dots, b_k)$. Here

$$u.z = \sum_{i=1}^{k} u_i z_i$$
 and $u_k = 1 - u_1 - \dots - u_{k-1}$ (2.3.2)

If k = 1, define F(b, z) = f(z).

Fractional Derivative [8, p.181]:

The concept of fractional derivative with respect to an arbitrary function has been used by Erdelyi[8]. The most common definition for the fractional derivative of order α found in the literature on the "Riemann-Liouville integral" is

$$D_z^{\alpha} F(z) = \frac{1}{\Gamma(-\alpha)} \int_{0}^{z} F(t)(z-t)^{-\alpha-1} dt$$
 (2.4.1)

Where $Re(\alpha) < 0$ and F(x) is the form of $x^p f(x)$, where f(x) is analytic at x = 0.

Advanced Modified M - Function -

We give the new special function, called **Advanced Modified M** - **function [16]**,, which is the most generalization of New Generalized Mittag-Leffler Function . Here, we give first the notation and the definition of the New Special **Advanced Modified M** - **function**, introduced by the author as follows:

$${}^{\alpha,\beta,\gamma,\delta,\rho}_{p}\mathbf{M}_{q}^{k_{1},\dots k_{p},l_{1},\dots l_{q};c}(t) = \sum_{n=o}^{\infty} \frac{(a_{1})_{n} \dots (a_{p})_{n}(\gamma)_{n}}{(b_{1})_{n} \dots (b_{q})_{n}} \frac{(\delta)_{n}}{(\rho)_{n}} \frac{k_{1}^{n} \dots k_{p}^{n}}{l_{1}^{n} \dots l_{q}^{n}} \frac{\prod_{i=1}^{n} a_{i}^{a_{i}} (ct)^{(n+\gamma)\alpha-\beta-1}}{\prod_{i=1}^{n} b_{i}^{b_{i}} n! \Gamma((n+\gamma)\alpha-\beta)}$$
(3.1)

There are p upper parameters $a_1, a_2, \dots a_p$ and q lower parameters $b_1, b_2, \dots b_q, \alpha, \beta, \gamma, \delta, \rho \in C, Re(\alpha) > 0$, $Re(\beta) > 0$, $Re(\gamma) > 0$, $Re(\delta) > 0$, $Re(\alpha\gamma - \beta) > 0$ and $(a_j)_k (b_j)_k$ are pochammer symbols and $k_1, \dots k_p$, $l_1, \dots l_q$ are constants. The function (1) is defined when none of the denominator parameters $b_j s$, $j = 1, 2, \dots q$ is a negative integer or zero. If any parameter a_i is negative then the function (1) terminates into a polynomial in (t).

EQUIVALENCE

In this section, we shall show the equivalence of single Dirichlet average of **Advanced Modified M** – **function**, (k = 2) with the fractional derivative i.e.

$$S(\beta, \beta'; x, y) = \frac{\Gamma(\beta + \beta')}{\Gamma\beta} (x - y)^{1 - \beta - \beta'} D_{x - y}^{-\beta'} D_{y}^{\beta, \gamma, \delta, \rho} \mathbf{M}_{q}^{k_{1}, \dots k_{p}, l_{1}, \dots l_{q}; c} (x) (x - y)^{\beta - 1}$$

$$\tag{4.1}$$

Proof:

$$\begin{split} S(\beta,\beta';x,y) &= {}^{\alpha,\beta,\gamma,\delta,\rho}_{\ p} \mathbf{M}_{q}^{k_{1},\dots k_{p},l_{1},\dots l_{q};c}(t) \\ &= \sum_{n=o}^{\infty} \frac{(a_{1})_{n} \ \dots \left(a_{p}\right)_{n}(\gamma)_{n}}{(b_{1})_{n} \dots \left(b_{q}\right)_{n}} \frac{(\delta)_{n}}{(\rho)_{n}} \frac{k_{1}^{n} \dots k_{p}^{n}}{l_{1}^{n} \dots l_{q}^{n}} \frac{\prod_{i=1}^{n} a_{i}^{a_{i}} \ (ct)^{(n+\gamma)\alpha-\beta-1}}{\prod_{i=1}^{n} b_{i}^{b_{i}} \ n! \ \Gamma((n+\gamma)\alpha-\beta)} \ R_{(n+\gamma)\alpha-\beta-1}(\beta,\beta';x,y) \\ &= \sum_{n=o}^{\infty} \frac{(a_{1})_{n} \ \dots \left(a_{p}\right)_{n}(\gamma)_{n}}{(b_{1})_{n} \dots \left(b_{q}\right)_{n}} \frac{(\delta)_{n}}{(\rho)_{n}} \frac{k_{1}^{n} \dots k_{p}^{n}}{l_{1}^{n} \dots l_{q}^{n}} \frac{\prod_{i=1}^{n} a_{i}^{a_{i}}}{\prod_{i=1}^{n} b_{i}^{b_{i}}} \frac{(c)^{(n+\gamma)\alpha-\beta-1}}{n! \ \Gamma((n+\gamma)\alpha-\beta)} \frac{\Gamma(\beta+\beta')}{\Gamma\beta \ \Gamma\beta'} \int_{0}^{1} [ux \\ &+ (1-u)y]^{((n+\gamma)\alpha-\beta-1)} u^{\beta-1} (1-u)^{\beta'-1} du \end{split}$$

Putting u(x - y) = t, we have,

$$= \sum_{n=0}^{\infty} \frac{(a_1)_n \dots (a_p)_n (\gamma)_n}{(b_1)_n \dots (b_q)_n} \frac{(\delta)_n}{(\rho)_n} \frac{k_1^n \dots k_p^n}{l_1^n \dots l_q^n} \frac{\prod_{i=1}^n a_i^{a_i}}{\prod_{i=1}^n b_i^{b_i}} \frac{(c)^{(n+\gamma)\alpha-\beta-1}}{n! \Gamma((n+\gamma)\alpha-\beta)} \frac{\Gamma(\beta+\beta')}{\Gamma\beta \Gamma\beta'} \int_0^{x-y} [t + y]^{((n+\gamma)\alpha-\beta-1)} \left(\frac{t}{x-y}\right)^{\beta-1} \left(1 - \frac{t}{x-y}\right)^{\beta'-1} \frac{dt}{x-y}$$

http://www.ijesrt.com © Int

© International Journal of Engineering Sciences & Research Technology

On changing the order of integration and summation, we have

$$= (x - y)^{1 - \beta - \beta'} \frac{\Gamma(\beta + \beta')}{\Gamma\beta} \int_{0}^{\infty} \sum_{n=0}^{\infty} \frac{(a_{1})_{n} \dots (a_{p})_{n} (\gamma)_{n}}{(b_{1})_{n} \dots (b_{q})_{n}} \frac{k_{1}^{n} \dots k_{p}^{n}}{(\rho)_{n}} \frac{\prod_{i=1}^{n} a_{i}^{a_{i}}}{\prod_{i=1}^{n} b_{i}^{b_{i}}} \frac{(c)^{(n+\gamma)\alpha-\beta-1}}{n! \Gamma((n+\gamma)\alpha-\beta)} [t + y]^{((n+\gamma)\alpha-\beta-1)} (t)^{\beta-1} (x - y - t)^{\beta'-1} dt$$

ISSN: 2277-9655

Or

$$=(x-y)^{1-\beta-\beta'}\frac{\Gamma(\beta+\beta')}{\Gamma\beta}\int\limits_{0}^{x-y}\int\limits_{p}^{x-y}\mathbf{M}_{q}^{k_{1},\dots k_{p},l_{1},\dots l_{q};c}(x)(t)^{\beta-1}(x-y-t)^{\beta'-1}dt$$

Hence by the definition of fractional derivative, we get

$$S(\beta, \beta'; x, y) = (x - y)^{1 - \beta - \beta'} \frac{\Gamma(\beta + \beta')}{\Gamma\beta} D_{x - y}^{-\beta' \alpha, \beta, \gamma, \delta, \rho} \mathbf{M}_q^{k_1, \dots k_p, l_1, \dots l_q; c}(x) (x - y)^{\beta - 1}$$

This completes the Analysis.

REFERENCES

- [1] Carlson, B. C., Special Function of Applied Mathematics, Academic Press, New York, 1977.
- [2] Carlson, B. C., Appell's function F₄ as a double average, SIAM J.Math. Anal.6 (1975), 960-965.
- [3] Carlson, B. C., Hidden symmetries of special functions, SIAM Rev. 12 (1970), 332-345.
- [4] Carlson, B. C., Dirichlet averages of x t log x, SIAM J.Math. Anal. 18(2) (1987), 550-565.
- [5] Carlson, B. C., A connection between elementary functions and higher transcendental functions, SIAM J. Appl. Math. 17 (1969), 116-140.
- [6] Deora, Y. and Banerji, P. K., Double Dirichlet average of e^x using fractional derivatives, J. Fractional Calculus 3 (1993), 81-86.
- [7] Deora, Y. and Banerji, P. K., Double Dirichlet average and fractional derivatives, Rev.Tec.Ing.Univ. Zulia 16(2) (1993), 157-161.
- [8] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G., Tables of Integral Transforms, Vol.2 McGraw-Hill, New York, 1954.
- [9] Gupta, S.C. and Agrawal, B. M., Dirichlet average and fractional derivatives, J. Indian Acad.Math. 12(1) (1990), 103-115.
- [10] Gupta,S.C. and Agrawal, B. M., Double Dirichlet average of e^x using fractional derivatives, Ganita Sandesh 5 (1) (1991),47-52.
- [11] Mathai, A. M. and Saxena, R. K., The H-Function with Applications in Statistics and other Disciplines, Wiley Halsted, New York, 1978.
- [12] Saxena, R. K., Mathai, A. M and Haubold, H. J., Unified fractional kinetic equation and a fractional diffusion equation, J. Astrophysics and Space Science 209 (2004), 299-310.
- [13] Sharma, M. and Jain, R., Double Dirichlet Average $x^t \log x$ and Fractional Derivative, J. of Indian Acad. Of Math. Vol. 28, No. 2(2006), 337-342
- [14] Sharma, M. and Jain, R., Dirichlet Average of *coshx* and Fractional Derivative, South East Asian J. Math. And Math. Sc. Vol.5, No. 2(2007), 17-22.
- [15] Sharma, M., Fractional Integration and Fractional Differentiation of the M-Series, Fract. Calc. Appl. Anal. 12 No.4 (2008) 187-191.
- [16] Sharma, M., A new Special Function Advanced Modified M function and Fractional Calculus, ijesrt(2012).
- [17] Sharma, M. and Jain, R., A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal. 12 No.4 (2009) 449-452.